Fusion proteins with anticoagulant and fibrinolytic properties: functional studies and structural considerations.

نویسندگان

  • Christian Icke
  • Bernhard Schlott
  • Oliver Ohlenschläger
  • Manfred Hartmann
  • Karl-Heinz Gührs
  • Erika Glusa
چکیده

In an effort to combine the benefits of fibrinolytics, such as staphylokinase, with those of thrombin inhibitors for the prevention of vessel reocclusion after vascular injury, we have produced several chimeric proteins with plasminogen-activating and thrombin-inhibiting properties. Fusion proteins were constructed consisting of the modules staphylokinase (Sak), the factor Xa cleavage site, and various dipetalin (Dip) domains (H(6)-Sak-Dip-I+II, H(6)-Sak-Dip-I, and H(6)-Sak-Dip-II). Sak stimulates fibrinolysis via activation of plasminogen, whereas dipetalin is a two-domain, Kazal-type inhibitor of thrombin. NMR spectroscopy of the fusion proteins revealed that the molecular structures of the modules are retained in the fusion protein and that no significant interactions occur between the modules in terms of their functionally relevant regions. In enzymatic thrombin inhibition tests and blood coagulation assays (thrombin, prothrombin, and activated partial thromboplastin times), no significant differences in anticoagulant capacity were observed between the fusion protein H(6)-Sak-Dip-I+II and isolated Dip-I+II, even at nanomolar concentrations. Similar results (i.e., the inhibition of thrombin-induced platelet aggregation and the inhibition of thrombin-induced vascular relaxation) were obtained when the cellular thrombin effects were studied. The fusion protein containing Dip-I has less but still significant thrombin inhibitory effects compared with those of H(6)-Sak-Dip-I+II. In contrast, the H(6)-Sak-Dip-II protein failed to inhibit thrombin in each of the assays used. The plasminogen-activating and fibrinolytic activities of the fusion proteins are similar to those of wild-type Sak. The individual dipetalin domains do not activate plasminogen. In conclusion, the fusion protein H(6)-Sak-Dip-I+II is a bifunctional molecule able to activate fibrinolysis via plasminogen activation and inhibit blood coagulation via direct inhibition of thrombin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Fibrinolytic Activity in Iranian Vipera Lebetina Venom

Background and purpose: Vipera lebetina lives in different areas in Iran, and its venom contains a variety of proteins with coagulant and anticoagulant activities. Fibrinolytic enzymes could have a therapeutic role in dissolution of blood clots, so, this study aimed at separating the venom components of Iranian V. lebetina and detecting its anticoagulant activity. Materials and methods: In thi...

متن کامل

Structural-functional studies of peptides derived from a long-chain snake neurotoxin Naja naja oxiana

Introduction: The design and structural characterization of mini-proteins with a compact, folded structure provide insight into the complex architecture of proteins today and has long been a challenging issue in structural- functional studies. Alpha neurotoxins from snake venom have a distinct folded structure comprised of a disulphide core and three loops or “fingers” each of these loops are c...

متن کامل

Snake venom proteins and coagulopathy caused by snakebite

Snakebite affects around 3 or 4 million humans annually leading to more than 100,000 deaths. Coagulopathy is one of the significant causes of both morbidity and mortality in these patients. Accordingly, it is of utmost importance to diagnose and treat coagulation disorder due to bites; in addition, it is accompanied by various clinical aspects, such as pre-coagulation, fibrinogen coagulation ti...

متن کامل

Molecular and functional characterization of a Schistosoma bovis annexin: fibrinolytic and anticoagulant activity.

Annexins belong to an evolutionarily conserved multigene family of proteins expressed throughout the animal and plant kingdoms. Although they are soluble cytosolic proteins that lack signal sequences, they have also been detected in extracellular fluids and have been associated with cell surface membranes, where they could be involved in anti-haemostatic and anti-inflammatory functions. Schisto...

متن کامل

Processing Time Effects on Functional and Antioxidant Properties of the Quinoa Proteins Hydrolyzed with Alcalase and Pancreatin

Background and Objectives: Antioxidants are used to decrease oxidation of oils and increase shelf life of foods for centuries. Nowadays, researchers investigate for the replacement of synthetic antioxidants with antioxidants from natural sources. The purpose of this study was to investigate effects of quinoa enzyme-hydrolyzed proteins on functional and antioxidant properties of the produced pep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 62 2  شماره 

صفحات  -

تاریخ انتشار 2002